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Problem Statement
This study aims to explore optimizations of Lattice-Boltzmann method proxy applications
by exploiting domain specific geometry such as macroporous materials and 3-dimensional
tubular systems, and quantify the resulting performance.



Abstract

The Lattice-BoltzmannMethod (LBM) is a method for simulating fluid flow well suited for
simulating flow in complex geometries. Modern High-Performance Computing platforms
allow large-scale and accurate simulations using LBM models, such as the 3-dimensional
D3Q27 model, attracting interest in areas like blood-flow simulations. This thesis analy-
ses the impact of geometry-specific optimizations targeted towards sparse geometries like
coronary arteries and explores the same optimizations for porous rocks using an array of
emulated geometries.

Using distributed and shared memory parallelism with MPI and OpenMP, we have
created a proxy application for the LBM using the D3Q27 model. We have implemented
optimizations targeted towards these geometries, using indirect addressing and loop struc-
ture optimizations.

Through experiments on the Fram and Betzy supercomputers, we show that these opti-
mizations together can achieve up to 48x speedup over the geometry-unaware baseline for
sparse geometries like coronary arteries. We show that the optimized versions scale close
to linearly with decreasing porosity, and that we see up to 5x speedup for porosities around
10%, commonly found in porous rocks like sandstone.
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Sammendrag

Lattice-Boltzmann Metoden (LBM) er en metode for å simulere væskestrøm spesielt egnet
for å simulere flyt i komplekse geometrier. Moderne Høy-Ytelses Databehandlingsplat-
tformer legger til rette for store og nøyaktige simuleringer ved bruk av LBMmodeller, som
f.eks. D3Q27modellen, noe som vekker interesse innen områder som simulering av blod-
strøm. Denne avhandlingen analyserer effekten av geometrispesifikke optimaliseringer ret-
tet mot spredte geometrier som koronararterier, og utforsker de samme optimaliseringene
for porøse steiner ved bruk av en rekke emulerte geometrier.

Ved hjelp av distribuert og delt minne-parallelitet med MPI og OpenMP, har vi laget en
proxy-applikasjon for LBM ved bruk avD3Q27-modellen. Vi har implementert optimalis-
eringer rettet mot disse geometriene, ved bruk av indirekte adressering og optimalisering
av løkkestrukturer.

Gjennom eksperimenter på superdatamaskiner som Fram og Betzy viser vi at disse op-
timaliseringene sammen kan oppnå opptil 48x raskere ytelse enn den geometri-uvitende
basislinjen for spredte geometrier som koronararterier. Vi viser at de optimaliserte ver-
sjonene skalerer nær lineært med synkende porøsitet, og at vi oppnår opptil 5x raskere
ytelse for porøsiteter rundt 10%, sammenlignbart med porøse steiner som sandstein.
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Chapter 1
Introduction

1.1 Motivation

1.1.1 Computational Fluid Dynamics

Computational Fluid Dynamics (CFD) is an increasingly important tool in the modern
world, with applications in the energy sector, medical sciences and environmental studies.
The Lattice-Boltzmann Method is a popular method used in simulating fluid flow that has
attracted a lot of attention in the past two decades, much due to its numerical nature and in-
herently parallel algorithm[5]. Coupled with its ability to accurately simulate macroscopic
behavior in Newtonian fluids, this puts the LBM in a position of high interest both for sim-
ulating fluid in many scenarios and a valuable asset in exploring the increasing availability
of parallel machines in High-Performance Computing (HPC).

The LBM can be discretized in both two and three dimensions with a fitting lattice
configuration, providing various degrees of accuracy depending on the needs of the sim-
ulation. With the availability of increasingly powerful machines, higher dimensions and
larger lattice configurations of the LBM are becoming more viable targets for simulations,
requiring more research into optimizing the LBM in these configurations.

Porousmedia have long been a popular target for the LBM,with applications like oil and
gas, erosion, and pollution propagation[9, 20], much due to the LBMs no-slip bounceback
boundary conditions that make it an efficient scheme for complicated geometries. Image-
based modeling of blood flow using CFDs has broad and impactful implications in medical
science and the planning of patient-specific interventions. However, reviews have called
for tools and demonstrations of the practical feasibility of this application[34]. With a
significant pain point of the LBM being its large requirements of computing resources,
exploring optimization methods targeted specifically towards blood-flow simulations can
help achieve this goal.

1
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1.1.2 Proxy applications
Proxy applications canmake identifying and analyzing specific performance issues in large-
scale applications easier by creating a minimal application focusing on one or a few per-
formance issues, referred to as proxy applications. These applications allow programmers
to more accurately profile performance issues in the application and explore methods to
improve them without creating a full-scale application. Creating a proxy application for
the LBM, targeted towards geometry-specific optimizations, provides a platform for rapid
implementation and analysis of optimizations in LBM applications.

1.2 Scope
In this thesis, we create a proxy application for the LBM to analyze optimizations that ex-
ploit the geometries of simulations in porous rocks and blood-flow simulations. As we
are studying the LBM applied to blood-flow applications and porous rocks, we opt to use
the D3Q27 discretization of the LBM, due to it’s high accuracy[18] and large resource
requirements. This proxy application is based on a hybrid-memory parallel D2Q9 proxy
application we have created as part of this thesis. We then adapt the D3Q27 proxy appli-
cation to be useful in the context of both porous rocks and blood-flow simulation, which
involves creating and initializing the simulation environment for these simulation targets.
Lastly, we implement some optimizations, namely indirect addressing and resulting op-
timizations to loop structures, and analyze their impact on the proxy application in the
context of the aforementioned geometries. Our contributions are:

• We have created an LBM D3Q27 proxy application targeted towards HPC environ-
ments using a hybrid memory programming model with MPI and OpenMP.

• We have implemented methods to evaluate the proxy application in the context of
simulating flow through emulated porous rocks and blood-flow simulations of patient-
specific arteries.

• We have experimented with and analyzed optimizations targeted toward sparse ge-
ometries like blood-flow simulations, and evaluated these optimizations on emulated
porous rock geometries. We show the optimizations effectiveness for each domain
geometry and analyze their scalability with different configurations of domain size
and computing environment. We then provide insights into the relation of the opti-
mized LBM application and domain geometry traits like sparsity and porosity.

2



1.3 Structure

1.3 Structure
• Chapter 2 covers related work on indirect addressing and the LBM, and presents
related work on the LBM applied to blood flow computations and porous rocks.

• Chapter 3 presents the theoretical background used in the implementation and anal-
ysis of the proxy application.

• Chapter 4 provides details on the implementation of the proxy application and the
optimizations.

• Chapter 5 provides details on the experiments including the simulation domains, test
environment, and benchmarks.

• Chapter 6 analyzes the results of the experiments.

• Chapter 7 concludes the results, outlines our findings, and presents ideas for future
work.

3



Chapter 1. Introduction

4



Chapter 2
Related work

This chapter briefly covers related work on optimizing the LBM using indirect addressing
and GPU programming. Porous rock simulations using the LBM is an explored topic, while
blood-flow simulations have seen less attention. We cover both these topics in short.

2.1 Indirect addressing
Zeiser et al. [36] argue that simplified LBM kernels describing large applications often
fail to describe the pattern of realistic simulation scenarios. They simulate an example
geometry where only 44% of the geometry’s cells are fluid nodes, mirroring a domain used
in chemical processes. With large simulation domains, the memory requirements grow
unnecessarily large, considering most of the memory covers solid nodes that don’t require
any computation. They implement an LBM solver where only fluid nodes are allocated,
substantially reducing the memory requirement and load using indirect addressing.

Adapting the LBM to sparse geometries has previously introduced different indirect ad-
dressing schemes, such as connectivity matrix[29] and fluid index array[24, 35]. The con-
nectivity matrix aims to reduce indirect accesses at the cost of a slight increase in memory
requirements compared to a simpler access scheme such as the fluid index array, shown to
impact the performance greatly. For sparse geometries, even the fluid index array scheme
is shown to provide a massive benefit to the LBM, with GPU-enabled applications using
fluid index arrays on sparse geometries with 1/5 or less of nodes being fluid nodes having
a speedup of up to 4 times.

2.2 GPU accelerated LBM applications
GPUs provide high floating-point performance compared to CPUs and are designed to
process large computations in parallel, making them a popular target for HPC applications.
Several studies have already shown that the parallel nature of the GPU and its high memory
bandwidth is an effective platform for the LBMs memory bound nature[18, 19]. Several

5
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implementations also use modern GPU clusters to simulate large D3Q19 and D3Q27 LBM
models. They show that combining GPU-accelerated kernels with message-passing using
MPI is an effective way to utilize GPU clusters for large-scale LBM simulations. Nita et al.
[24] show a speedup of 19.42x of a single-GPU LBM application compared to a CPU-
parallel version using OpenMP. This shows the effectiveness, especially for memory-bound
applications like the LBM. However, we see an issue in this comparison as a single GPU
is not directly comparable to a single CPU. Comparing the GPU version to a multi-CPU
cluster might be more indicative of real-world scenarios, especially in HPC environments.

2.3 Blood flow simulations in the LBM
Simulating blood flow has been shown to be accurate on a macroscopic level using the
LBM. Using imaging techniques makes it possible to accurately simulate patient-specific
blood flow using the LBM[34, 22]. Using both GPU accelerated clusters and indirect ad-
dressing, optimizing the LBM for these types of simulations has been explored and shown
to be an exceptionally effective target geometry for these optimizations[24].

2.4 Porous rock simulations
Mattila et al. [20] use indirect addressing in a GPU-accelerated LBM application to simu-
late flow through porous rocks. They also use a recursive bisection domain decomposition
method to achieve an almost perfect workload balance between subdomains. They show
that it is viable to simulate sample sizes up to 16, 3843 lattice nodes.

Ramstad et al. [27] use a D3Q19 lattice model to show that the LBM accurately sim-
ulates capillary pressure and wetting effects in capillary tubes. Using models of sandstone
obtained from X-ray microtomography, they conclude that the simulated data obtained
from LBM simulations correspond well to experimental data. Although preliminary re-
sults show the usefulness of the LBM in this simulation, they conclude that a lot of work
is required to investigate the LBM’s viability for full-scale simulations.

6



Chapter 3
Background

This chapter briefly covers the theory of the Lattice-Boltzmann method, including the cho-
sen parameters used in our implementation. We then cover the motivation and ideas be-
hind proxy applications and performance modeling in the HPC space. Further, we describe
the programming models used, particularly shared-memory and distributed programming
models using MPI and OpenMP. Lastly, we also cover the basics of CFDs and applications
of the LBM for porous rocks and blood flow simulations.

3.1 Lattice-Boltzmann Method
The Lattice-Boltzmann method assumes that simple kinetic models can accurately model
the macroscopic behavior of fluids when averaged over a large area[5]. The LBM models
fluids as a lattice of discrete particle densities. While traditional kinetic theory uses an
entirely functional space for the particles’ velocity directions, the LBM uses only a few
velocity directions and movement directions. Details of the LBM are already provided by
Chen et al.[5] and several implementations of the method[19, 32, 12]. This section will
give an overview of the most essential parts of the LBM.

The LBM is described by the equation:

fi(x+ cidt, t+ dt) = fi(x, t) + ∆i(f − feq) (3.1)

where the left side describes the streaming phase and the right side the collision phase. fi
is the density distribution at lattice point i. The density equilibrium distribution function
feq is given by:

feq(ρ, u) = wiρ

(
1 +

ci · u
c2s

+
(ci · u)2

2c4s
− u2

2c2s

)
(3.2)

ρ =
∑
i

fi (3.3)
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Figure 3.1: Lattice models for 2- and 3-dimensional lattices.

ρu =
∑
i

ceifi (3.4)

where ci is the direction vector for the lattice point i and cs determines the velocity of the
fluid, chosen to be the speed of sound cs = 1/

√
3. The direction vectors for D2Q9 and

D3Q27 are illustrated in Fig. 3.1. wi is the lattice weight coefficient dependent on the
lattice model. ρ is the fluid density and u is the fluid velocity, given by Equations (3.3)
and (3.4) respectively.
The last term in (3.1) is given as a function of the time relaxation parameter τ and the
difference between the current density distribution and the equilibrium distribution after
collision:

∆i(f − feq) = −1

τ
(fi − feq

i ) (3.5)

The weight coefficients for D2Q9 are chosen as:

wi =


4
9 i = 0
1
9 i = 1, 3, 5, 7
1
36 i = 2, 4, 6, 8

and for D3Q27:

wi =


8
27 i = 0
2
27 i = 1, 3, 5, 7, 9, 18
1
54 i = 2, 4, 6, 8, 10, 12, 14, 16, 19, 21, 23, 25
1

216 i = 11, 13, 15, 17, 20, 22, 24, 26

8



3.2 Proxy applications

To compute the density (and, by effect, the macroscopic velocity), we compute the lo-
cal equilibrium distribution for all fluid directions before propagating the new distribution
to the neighboring points. One method to do this is to store the next version of the density
distribution fi +∆i(f − feq), which is computed in the collision step in a variable. The
current version of the density distribution fi is stored in another variable, which is updated
by propagating the next density distribution to the current in the streaming step. A simu-
lation using the LBM will then consist of several iterations of the collide and stream steps
recomputing the density at each lattice point for every time step.

3.2 Proxy applications
Identifying performance issues in HPC applications is an increasingly important and chal-
lenging task, due to increasing complexity of both hardware and software. Modern appli-
cations require developers to be increasingly aware of hardware-software co-design, which
further increases the complexity of porting and optimizing applications for exascale sys-
tems. To better the process of predicting the performance of such applications, the idea of
miniapplications[7] allows developers to extract the most important factors of a full-scale
application and condense it into a small program more suitable for performance evalua-
tion and porting to several different systems and architectures. Mini-applications have also
been commonly regarded as Proxy applications, which is the term we use in this thesis.

Modern supercomputers are highly complex and increasingly specialized systems. Sys-
tems can vary implementation details such as the underlying computing architecture, net-
work topology, memory configuration, and core count. To develop effective programs that
can take advantage of the systems they run on, programmers need to take into account a
plethora of hardware-specific quirks that can affect the effectiveness and the speed of the
program. To help developers and HPC system builders better understand the synergy of
hardware and software, Barker et al. [2] provides a method to accurately model and pre-
dict the performance of applications on different systems. The method used in this thesis,
inspired by Barker et al. [2], is visualized in Fig. 3.2.

Measuring the performance of our proxy application with different parameters, e.g.:

• Domain size

• Domain-specific parameters (geometry, balance)

• Process topology

• Process and thread count

we can analyze the performance impact of changes to one of the parameters. This analysis
can provide the basis for an understanding of how the application will perform in similar
scenarios.

9
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Program
code
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on system

Kernel

Kernel
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Configuration

Full feature
application

...

Identify codes
contributing to

performance issues

Create mini
application(s)

Benchmarks

Figure 3.2: Development and analysis of a proxy application. Adapted from the graphic in [2].

3.3 Programming models
Creating programs for parallel computing systems requires that the programmer is aware of
the architecture of the hardware they are targeting. In this context, a parallel programming
model classifies howwe construct programs to be parallel, specifically, how the parts of the
program running in parallel communicate and synchronize. There exist several well-known
parallel programming models[15]. However, we only cover shared-memory programming
and distributed memory programming/message-passing.

3.3.1 Distributed memory programming
In a distributed memory programming model, also known as message-passing, multiple
processes (tasks) exchange data by sending and receiving messages on a network. These
tasks only require network access between each other and do not depend on the underlying
architecture of the system. Tasks can reside on different machines on a network or on the
same machine.

MPI

Distributed memory programming applications require software support to synchronize
and share messages between processes. Message Passing Interface (MPI) is a message-
passing library interface specification[10] designed to do precisely this. The MPI standard
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defines a large set of procedures and datatypes that allow programmers to send messages
between processes connected over a network. It has several implementations, most notably
in the C and Fortran programming languages. The most well-known implementations for
C compilers include OpenMPI and Intel MPI. As MPI defines a strict interface, switching
out the implementation that is used is as simple as changing the compiler with no change
to the underlying program.

Using MPI for distributed-memory programming can be done with the help of the Sin-
gle Program, Multiple Data (SPMD) programming paradigm. In SPMD, the programmer
creates a single application that is run on all processes, whereMPI function calls are identi-
cal on all processes. TheMPI library then handles the synchronization andmessage passing
between processes upon the invocation of MPI procedures. Since all programs have a rank
(or process ID), the programmer may also dynamically execute code on specific processes.

Working with complicated data structures in distributed-memory applications is a non-
trivial matter. To help with this issue, MPI provides a robust and flexible type system
that can be used directly in MPI communication procedures. The programmer can define
MPI_Types that describe the memory layout of a specific object and how objects are spread
out in memory. Some notable MPI types used in this thesis include:

• Contiguous types: A contiguous, fixed-size block of data.

• Strided vectors: Allows defining a vector with evenly spaced blocks of data in mem-
ory.

• Indexed blocks: Allows defining data structure that is non-uniformly spread across
a memory region by defining an index array containing the memory offsets to each
object in the memory region.

MPI also allows the combination and redefinition of MPI types based on other MPI
types to create complex types that build on more fundamental types. E.g. one can define a
1D vector corresponding to a row of data in a 2D matrix. Expanding this to 3 dimensions,
one can use the 1D vector type to define a 2D vector corresponding to a plane in a 3D
matrix space. With these types, programmers can send messages containing a 2D plane
normal to arbitrary x, y, or z coordinates in MPI message-passing procedures by passing
the type and a memory offset as parameters.

A feature not related to the message-passing that MPI implements is timers. MPI de-
fines the MPI_Wtime() function that accurately returns the elapsed time of some time in the
past, for the process it is called in.

3.3.2 Shared-memory programming
A common way of implementing parallel programming is using shared-memory program-
ming. In this programming model, we utilize the operating systems’ light-weight threads
that share the same memory space, operating on the same values in memory. By using
the same memory space, the threads can communicate by accessing and storing data in
memory as usual, without the need for message-passing procedures, such as in MPI. Since
these threads use the same memory space, it also allows us to quickly create and destroy
new threads during the lifetime of a program. The drawback of this method is that it is
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effectively limited by the hardware the program is running on, in that we can only run
as many parallel threads as the CPU supports. To overcome this limitation and combine
the strengths of shared and distributed-memory processing, programmers can use a hybrid
programming model.

OpenMP

OpenMP[26] is a specification for compiler-supported shared-memory programming. It
is implemented in many standard C compilers, such as the GNU compiler and the Intel
compilers used in this thesis. OpenMP provides the programmer with a set of directives
and several library functions that can be used to create threads. An OpenMP compiler
directive consists of several combined constructs to effectively inform OpenMP of how to
parallelize a structured block in a program. One such directive is parallel for. The example
C code in Listing 3.1 shows how this compiler directive is used in a program to parallelize
a for loop. In this example, OpenMPwill create OMP_NUM_THREADS threads, each working
on a subset of the loop. OMP_NUM_THREADS is either decided by OpenMP automatically
by inferring the number of available CPU cores, defined using environment variables, or
set by the program using a library function.

The parallel for directive has several options for scheduling the loop iterations among
threads, where the default scheduling is left up to the compiler to decide.

1 #pragma omp p a r a l l e l f o r
2 f o r ( i n t i =0 ; i < l e n g t h ; i ++) {
3 compute_va lue ( i ) ;
4 }

Listing 3.1: Shared-memory parallelization of a for loop using OpenMP directives

3.3.3 Hybrid-memory programming
To best utilize the strengths of each programming model, we can combine the two models
to create a hybrid-memory parallel program. This model uses a distributed-memory pro-
gramming interface to create separate processes assigned to several compute nodes. Each
process can then use shared-memory programming to maximally utilize the parallel capa-
bility of the CPU it is running on without the overhead of inter-process message passing.

12



3.4 Amdahls law

3.4 Amdahls law
Amdahl’s law[1] describes the theoretical speedup of an application at a fixed workload.
It describes how the performance improvement of an application is limited by the fraction
of time spent by the part that is susceptible to improvement. In the context of parallel
programs, Amdahl’s law can be formulated by:

Speedup =
1

(1− P ) + P
N

(3.6)

where N is the core count, provided the parallelizable part has a speedup equal to the
number of cores. P is the proportion of time occupied by the parallelizable part.

The law can also provide an upper bound for the theoretical speedup of an application,
when N → ∞:

Speedup =
1

1− P
(3.7)

3.5 Strong and weak scaling
Strong scaling

The type of scaling that is described in Amdahl’s law, where the problem size stays constant
while the core count increases, we refer to as strong scaling.

Weak scaling

Gustafson’s law[13] states that the parallel part of a program scales linearly with the num-
ber of cores, while the serial part stays constant. This scaling, where the problem size is
increased with an increased core count, is referred to as weak scaling.

3.6 LBM simulation domains

3.6.1 Porous rocks
Porosity is defined as the fraction of the bulk volume of the porous sample that is occupied
by pore or void space[8]. In fluid simulations, the porosity is interpreted as the percentage
of volume that can be occupied by a fluid. Another important aspect of porous media
relevant in simulating fluid flows is the permeability. The permeability is a measure of
the conductivity of Newtonian fluids in a medium[8], essentially describing how well a
fluid can flow through the medium. Cancelliere et al. [4] have experimented with randomly
generated porous media and their permeability using the LBM. The medium is created
using a collection of spheres with a radius R, with the sphere center placed at random
points.

When simulating fluid flow through a medium obtained by scanning porous rocks,
we know that typical porosity levels of porous rocks can range from around 10–25% for
sandstone[9, 3], down to 8–20% when simulating gas flow through gas rocks[14]. This
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Chapter 3. Background

provides a basis for the range of porosities that are interesting to consider when creating
proxy domains for porous rock simulations using the LBM.

3.6.2 Blood flow simulations
Even though blood is considered a non-newtonian fluid on the microscopic level CITE, it is
useful to simulate blood flow using the LBM on both microscopic and macroscopic levels.
Sun and Munn [33] apply the LBM by simulating the interactions of red and white blood
cells moving through a Newtonian fluid. For large arteries and coronary systems, however,
the condition of Newtonian fluid is met, which makes the LBM a contender for accurately
simulating blood flow[22].

Boundary conditions in blood flow simulations are slightly more complicated than
porous rocks, as it’s not as easy to define a periodic flow direction to a potentially more
complicated structure. One possible boundary condition involves expressing, at the inlet,
ux and fi (i = 1, 2, 8, 10, 11, 17, 19, 20, 26 for D3Q27) based on the known fi and a set
ρin after streaming. Using the expression for the velocity in the x-direction and a bounce-
back rule for the unknown fi, we can satisfy the momentum and define all fi[37]. This
approach is used for the blood flow simulations performed by Nita et al. [24]

3.7 LBM applications
It is well known that the LBM is highly memory bound, much due to the low operational in-
tensity and non-local memory access pattern of the stream kernel. We have created roofline
models showing thememory-bound nature of the LBMusing an estimated arithmetic inten-
sity for the collide and stream kernels of aD2Q9 andD3Q27 proxy application (Fig. 3.3).
The roofline models also show that large models, such as the D3Q27 models, further de-
crease the arithmetic intensity and increase the memory load of the application.

This shows that optimizations of the LBM should primarily focus on improving the
memory performance of the application. These improvements should be directed towards
the streaming step, as it has very low arithmetic intensity and usually exhibits a non-ideal
memory access pattern for an array-of-structures memory layout. This is due to the low
spacial locality resulting from the memory layout placing adjacent fluid nodes far apart in
memory.
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0.06250.125 0.25 0.5 1 2 4 8 16
1

2

4

8

16

Arithmetic intensity [Flop/byte]

C
om

pu
ta
tio

na
lp

ow
er

[T
Fl
op
s/
s]

Nvidia A100 roofline model

D2Q6
D3Q27

(b) Roofline model for Nvidia A100

Figure 3.3: Roofline models for the LBM on a modern CPU and GPU. The dotted line shows the
operational intensity of the LBM and what performance can be expected. The LBM kernel has low
arithmetic intensity and is, as such very memory bound on most architectures
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Chapter 4
Implementation

In this chapter, we provide details on the implementation of the D3Q27 proxy application
developed for this thesis. We begin by describing the general flow of the program before
going into more detail on how we have applied the theory from Section 3.1 regarding the
LBM into the implementation of the streaming and collision kernels. We also detail the
approach used to parallelize the program using both OpenMP and MPI. Next, we cover the
modifications made during the implementation of the indirect addressing scheme for the
optimized proxy application. We also present the memory layout both with and without
indirect addressing.

4.1 Baseline implementation
The base implementation of the proxy application can be split up into three parts:

• Initialization

• Main loop

• Finalize

The program’s execution model is visualized with the flow diagram in Fig. 4.1.

Node types

The application differentiates between three different types of nodes: solid, fluid and wall.
The wall node type is a special node to simplify the logic of fluid-solid boundary conditions
explained in Section 4.1.7.

4.1.1 Initialization
In the initialization step, we perform basic setup of MPI, as well as domain setup to either
load a pre-generated domain definition or generate a domain from user parameters:
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Create cartesian topology
Load pre-generated domain
Create general MPI types
Initialize simulation domain
Create MPI types for indirect addressing

Free memory
Calculate and store performance results

Border exchange

Stream

Initialize

Main loop

Finalize

Border exchangeCollide

Figure 4.1: Flow diagram of the proxy application

1. Create cartesian topology: The first step is to initialize MPI. Any dynamic param-
eters, such as iteration count, domain specifications, and topology configurations,
are broadcast to all processes. We then create a new communicator and initialize the
MPI cartesian topology. The method is loosely based on the methodology outlined
in [6].

2. Load pre-generated domain: Read a domain definition file to load an existing do-
main in voxel format.

3. Create general MPI types: Based on the size of the domain, MPI vector types are
created for rows and planes in all directions, in addition to basic types for a fluid
node.

4. Initialize simulation domain: Create the simulation domain described by the input
file or user parameters. This configures the memory for all fluid/solid nodes and
classifies any wall nodes belonging to the specific rank.

5. (Create MPI types for indirect addressing: For the indirect addressing only, we
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4.1 Baseline implementation

create new types for all borders based on the domain definition from step 4 to be
used in place of the general MPI types in border exchange.)

4.1.2 Main loop
The main loop performs, in order, the collision, border exchange, and streaming steps. We
also take a snapshot of the current state of the simulation at configurable intervals.

4.1.3 Finalize
The finalization step calculates and writes performance data collected during the simula-
tion, cleans up memory and finalizes MPI before exiting.

4.1.4 Memory layout
For the baseline configuration, we store two copies for the density distribution, the current
and next distribution. In the collision kernel, we compute the density distribution at each
lattice point from the current distribution and store the new value in the next array. During
the streaming phase, the next density distributions are copied to the neighboring lattice
points in the current array. The current and next density distribution arrays are stored next
to each other in memory.

The memory layout of the density distribution arrays is chosen to be the array-of-
structures type of C memory layout, where we store the lattice points of a single fluid node
consecutively in memory in order f0 . . . f26 as defined in Fig. 3.1a. The fluid points are
then stored consecutively again. The order of the fluid nodes is such that the coordinates of
the fluid nodes run from fastest to slowest in the x-direction, y-direction, then z-direction.
The blue, red, and green arrays and corresponding blocks in the cube in Fig. 4.2 show how
this memory layout relates to the physical simulation environment.

0

3
4
5
6

2
1

4  3  2  1  0
1 2 3 4 5 6

Figure 4.2: Memory layout of the density arrays. The array in blue corresponds to a single fluid
node, the array in red a vector in the x-direction, and the array in green a plane in the x-y direction.
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With this memory layout, we can define the macro in Listing 4.1 to access a single
lattice point in the density array using its coordinates and lattice point index. We add two
to the height and one to the depth and width to account for ghost cells. This means that
D_now(0, 0, 0) is the first internal node of the ranks domain, and D_now(0, −1, −1) is the upper
left ghost cell in the same rank. We don’t want to store ghost cells separately, as keeping
the ghost cells close to the other cells could be beneficial for the memory performance of
the stream kernel.

1 # de f i n e D_now( i , j , k , d ) \
2 d e n s i t y [ 0 ] [D_COUNT * ( \
3 ( ( ( wid th ) * ( h e i g h t + 2 ) ) * ( k + 1) ) + ( wid th ) * ( i + 1 ) + ( j ) \
4 ) + ( d ) ]

Listing 4.1: The macro used to calculate the position in memory of the lattice point d in the fluid
node at (x, y, z) = (j, i, k)

4.1.5 Streaming
As the name implies, the streaming step operates similarly to the STREAM program[21].
The entirety of the stream kernel is included in Listing 4.2, where the streaming operation
is highlighted. As we need to account for ghost cells, we also add a set of boundary checks
to ensure that we only propagate the density to an internal fluid node and don’t perform
illegal memory accesses.

The kernel makes sure to loop over the fluid nodes and lattice points in the same order
they appear in memory, taking advantage of data locality and maintaining cache perfor-
mance. The outer loop is parallelized using the OpenMP parallel for directive. We assume
that the compiler will find an optimal scheduling for the threads with this setup.

1 #pragma omp p a r a l l e l f o r
2 f o r ( i n t _ t k = −1; k < dep th + 1 ; k++)
3 f o r ( i n t _ t i = −1; i < h e i g h t + 1 ; i ++)
4 f o r ( i n t _ t j = 0 ; j < wid th ; j ++) {
5 f o r ( i n t _ t d = 0 ; d < D_COUNT; d++) {
6

7 i n t _ t n i = ( i + OFFSET( d , 0 ) ) ;
8 i n t _ t n j = ( j + OFFSET( d , 1 ) + wid th ) % wid th ; / / wrap around i n x
9 i n t _ t nk = ( k + OFFSET( d , 2 ) ) ;

10

11 i f ( n i < 0 | | nk < 0 | | n i > h e i g h t − 1 | | nk > dep th − 1)
12 cont inue ;
13

14 /* Propaga te p r e s e n t f l u i d d e n s i t y
15 * t o n e i g hbo r s
16 * /
17 D_now( ni , n j , nk , d ) = D_nxt ( i , j , k , d ) ;
18 }
19 }

Listing 4.2: The stream kernel as programmed in the D3Q27 proxy application. The streaming
operation is highlighted on line 17.
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4.1.6 Collision
For the collision step, we use the same loop structure as the streaming kernel, with the
difference that we don’t iterate over the ghost cells. As we need the current velocity for the
collision operation in Eq. (3.2), we calculate the current velocity of the fluid node in all
directions before iterating over the lattice points. The fluid velocity is calculated from the
current density distribution using Eq. (3.4). The relevant code performing this calculation
is included in Listing 4.3, where the value for ρ is computed simultaneously.

1 f o r ( i n t _ t d = 0 ; d < D_COUNT; d++) {
2 rho += D_now ( i , j , k , d ) ;
3 V( i , j , k , 0 ) += c [ d ] [ 0 ] * D_now( i , j , k , d ) ;
4 V( i , j , k , 1 ) += c [ d ] [ 1 ] * D_now( i , j , k , d ) ;
5 V( i , j , k , 2 ) += c [ d ] [ 2 ] * D_now( i , j , k , d ) ;
6 }
7 V( i , j , k , 0 ) /= rho ;
8 V( i , j , k , 1 ) /= rho ;
9 V( i , j , k , 2 ) /= rho ;

Listing 4.3: Calculation of the fluid velocity for each fluid node in the collision kernel.

After completing the calculation of the equilibrium function at each point, we add the
result of the collision operator to the next density distribution. In Listing 4.4, the new
distribution is added to the corresponding lattice point based on the type of the node:

• Fluid: The redistributed density is copied to the same lattice point in the next array.

• Wall: If the lattice point is part of a wall node, the density is copied to the opposing
lattice point in the next density array. This corresponds to the bounce-back boundary
condition.

• Solid: Ignore

1 swi t ch (MAP( i , j , k ) ) {
2 /* R e d i s t r i b u t e f l u i d ac co rd i ng t o d e n s i t y / v e l o c i t y * /
3 case FLUID :
4 D_nxt ( i , j , k , d ) = D_now ( i , j , k , d ) + de l t a_N ;
5 break ;
6 /* Wal l s r e f l e c t incoming mass i n o p p o s i t e d i r e c t i o n * /
7 case WALL:
8 i f ( d != 0 )
9 D_nxt ( i , j , k , bounce ( d ) ) = D_now ( i , j , k , d ) ;

10 break ;
11 /* No work t o do on s o l i d p o i n t s * /
12 case SOLID :
13 break ;
14 }

Listing 4.4: Storing the result of the collision operation to the new density distribution based on the
node type.

The complete collision kernel is included in Appendix A.1.
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4.1.7 Boundary conditions
The boundary conditions we have used in this proxy application use common bounceback
conditions[37] and periodic flow at the inlet/outlet[32]. The bounceback condition is ap-
plied to wall nodes in the collision kernel. For the borders of the simulation domain, we
use a periodic flow in a chosen flow direction, creating an inlet and an outlet. For this ap-
plication, we have opted not to make the flow periodic in the other directions, and instead
make the assumption that there are always walls at the other edges of the domain. The flow
direction is chosen to be the x direction, such that the inlet is at x = 0 and the outlet at
x = width as shown in Fig. 6.1c.

Flow Outlet

Applied flow to inlet

Figure 4.3: The boundary conditions shown on an 80% generated porous domain. Solid nodes are
colored gray while the fluid nodes are shown in blue. The flow is applied at the left edge and flows
through the domain to the outlet at the right edge. The periodic flow means that the fluid flow at the
outlet is wrapped around to the inlet again.

In Listing 4.5, the inlet is programmed by adding a configurable force after calculating
∆i in the collision kernel.

1 The c o l l i s i o n k e r n e l a p p l i e s An a r t i f i c i a l f o r c e , j , k ) == FLUID )
2 de l t a_N += w[ d ] * ( c [ d ] [ 0 ] * f o r c e [ 0 ] + c [ d ] [ 1 ] * f o r c e [ 1 ] +
3 c [ d ] [ 2 ] * f o r c e [ 2 ] ) ;

Listing 4.5: Boundary condition at the inlet. An artificial force is applied to the fluid nodes at x = 1.

At the outlet boundary, we program the flow to be periodic by streaming the density of
a lattice point with a direction vector in the positive x direction to the inlet. In Listing 4.6,
the index of the current fluid node is calculated this way.

1 i n t _ t n i = ( i + OFFSET( d , 0 ) ) ;
2 i n t _ t n j = ( j + OFFSET( d , 1 ) + wid th ) % wid th ; / / wrap around i n x
3 i n t _ t nk = ( k + OFFSET( d , 2 ) ) ;

Listing 4.6: Outlet boundary condition. The density distribution is streamed by wrapping around in
the x direction. OFFSET is a macro to the lattice points direction vector.
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4.1.8 Border exchange
Traditional stencil applications involve computing the value at a single point as a function
of neighboring points in a pull. In the LBM, a similar strategy is used, except in reverse. In
a single node, we propagate all values in that node to all neighbors in a push fashion. This
means that nodes at the edges of a process’ local domain need to both: propagate to all
neighboring processes and push a neighbor’s values to its local edge nodes. For MPI
and distributed computing applications, this can be done using ghost cells[17]. These ghost
cells are added to the outside of a rank’s local domain, acting as a proxy for the neighbor
points. The values are added to the ghost cells by transferring the local edge of a process’
local domain to its neighbor’s corresponding ghost cells.

(a) (b)

Figure 4.4: Border exchange of ghost cells in a cartesian topology. The red outline indicates a bor-
der, while the green block represents a corner node being transferred across two processes.Fig. 4.4a
displays the first border exchange of columns, while Fig. 4.4b shows the row exchange. The green
corner cell, transferred from the bottom-right to the top-left process, is part of both exchanges.

To perform the border exchange, we use the method detailed in [17]. The simplest
method is to use the blocking MPI_Sendrecv method to both send and receive simultane-
ously. Using this method, we ensure that the borders are transferred in the correct order
to avoid deadlocks. The main issue to overcome with a cartesian topology is correctly
transferring corner cells. The neighboring process does not own these cells, so it can’t be
included directly in the border exchange. To overcome this issue, we exchange all cells
in one direction first, including all corner cells (Fig. 4.4a). The corner cells will not be
correct in this instance, but since the corner is part of the neighbor’s ghost border, we can
transfer the corner by including part of this border when transferring in the other direction,
as seen in Fig. 4.4b. The complete code for the border exchange (with the optimizations)
is included in Appendix A.3.

In order to exchange the border cells, we useMPI types to easily identify and transfer the
relevant data to neighboring processes. In this proxy application, we use the same process
topology as a 2-dimensional application with an added dimension. This means that instead
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of 1-dimensional borders, the borders in the application are 2-dimensional planes. In order
to create the required MPI types for these border planes, we can build on the 2D borders by
creating a new vector that uses the 2D vectors as base units and adding height vectors; we
now have an MPI type representing surface planes of all sides of a process. The complete
code for creating the MPI types are included in Appendix A.2.

4.1.9 Result storage
In order to evaluate the correctness of the application, we need to periodically save the
state of the system so that we can see how the system evolves over time. It is also useful to
visualize several aspects of the application and the domain it is simulating. For this proxy
application, we have opted to save the raw data for post-processing at a later stage. Using
NetCDF[28], we save the variables listed in Table 4.1 for each node in the simulated do-
main. We use NetCDF due to its robust C library with MPI parallel file access integration,
and its widespread use in scientific computing.

Table 4.1: The NetCDF variables we store for each node in the simulation geometry.

map Map type of the node (Solid, Fluid or Wall)
velocity Absolute velocity of the node
v_z Velocity in z-direction
v_y Velocity in y direction
v_x Velocity in x-direction
rank The rank of the process that owns the node

For each snapshot of the system state, we create a new netcdf4 file and use NetCDF’s
MPI parallel access mode to write the value of all variables owned by the rank to the file.
The velocity is calculated from v_x, v_y and v_z at each snapshot.

4.2 Experiment domain

4.2.1 Domain loading
As a large part of the motivation for this thesis is testing various domain geometries and
types, we require a method to use already existing models in addition to generated do-
main geometries. Several of the models used in the experiment are 3D models of coronary
arteries[31] that are accessible in the form of STL files. In order to use the models in a
simulation environment, we need the dataset in a fixed-size voxel format. To convert the
3D mesh files to a voxel format, we use the binvox voxelizer program[23, 25] to convert
the STL models to fixed sized binvox files.

With the domain geometries in a fixed-size voxel format, the application needs to parse
the geometry file and set up the domain in accordance with the specification. To do this,
we have created a small library containing functions for both writing and loading files in
the binvox file format. These functions are used in the proxy application to load arbitrary
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binvox files in the domain initialization step. Similarly, we use the function to write a
domain geometry in memory as a binvox file. This last step is a requirement for being able
to reuse a pseudo-random generated domain geometry in multiple experiments, as detailed
in Section 5.1.

4.3 Indirect addressing

The indirect addressing scheme chosen for this proxy application is the fluid node index
method. In this method, we use the same memory layout as detailed in Section 4.1.4,
but only fluid nodes are allocated in the density arrays. This means that the nodes in the
density array no longer correspond to the node’s index in the physical domain. Instead, we
create a new index array, shown in Fig. 4.5. The index array contains the data index of
the node in the density arrays. Solid nodes have an index of -1, indicating that they have
no corresponding data. The issue with this method is that we no longer have a reverse
mapping from a node in the density array to its index in the physical domain. This is not an
issue directly, but as we detail in later sections, iterating over the index array and finding
its index is useful for further optimizations. This mapping is implemented by creating a
corresponding array containing the x, y, and z coordinates of all fluid nodes in the density
array. The two arrays have corresponding indices, providing the ability to map from one
to the other.

In order to set up the indirect addressing, we calculate the number of fluid nodes after
creating the environment map and only allocate memory for the fluid nodes.

-1 -1 0 1 -1 2 3 -1 -1 4index_array -1 -1

density

-1 -1-1

0 1 2 3 4

coords

0 1 2 3 4

Figure 4.5: The indirect addressing implemented here. The index array points to the location of the
data in the density address if it exists. Nodes without data are set to -1. An additional array is added,
containing a mapping from indices in the density array to its coordinates.
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As we already have a macro for accessing the density arrays, we can exchange the code
in Listing 4.1 with the two macros in Listing 4.7 to use indirect addressing with minimal
change to the source code.

1 / / Get t h e i n d e x o f t h e f l u i d node a t p o s i t i o n ( i , j , k ) . Might be −1
2 # de f i n e P_index ( i , j , k ) \
3 i n d e x _ a r r [ \
4 ( ( ( wid th ) * ( h e i g h t + 2 ) ) * ( k + 1) ) + ( wid th ) * ( i + 1 ) + ( j ) \
5 ]
6

7 / / Cur r en t d e n s i t y d e i s t r i b u t i o n a t ( i , j , k ) o f l a t t i c e p o i n t d
8 # de f i n e D_now( i , j , k , d ) d e n s i t y [ 0 ] [D_COUNT * P_index ( i , j , k ) + ( d ) ]

Listing 4.7: The updated macros used to access the density array using the index from the index
array.

4.3.1 Border exchange

The indirect addressmapping poses a challenge, especially for distributed computing, when
we need to distribute borders to neighboring processes. One method could be to store all
border cells separately from internal cells and perform the transfers as before. However, one
benefit we wish to explore is how minimizing data transfers will affect the performance of
the application. This is especially interesting for sparse geometries, as we might see many
border exchanges drastically reduce in data size. For some borders, we can also expect to
see that the borders don’t contain any fluid nodes, and we can omit the transfer altogether.

The downside of using an indirect addressing scheme is that it is no longer trivial to
transfer a block, or evenly spaced blocks of data in memory as is possible with a filled data
structure. As the fluid nodes we now want to transfer can be located anywhere within the
memory region of the density arrays, we want to be able to transfer a specific subset of the
nodes in the array using the same MPI functions as before.

To transfer borders in the same manner as before, we utilize the MPI_Indexed_block type.
The process of creating the border MPI types needed for both ghost borders and internal
borders is visualized in Fig. 4.6. This process is extracted to a function that can create the
indirect addressed border types from the mapped border type, the contents of which are
included in Listing 4.8

Using MPI_Gatherwith a normal border type, we can copy the index array of a border 1
such that we are left with only the indexes of the cells in question. This data also implicitly
contains the mapping information of a single border. The blue cells in 2 indicate the
fluid cells in a border. We then iterate over the fluid indices of the border, where the blue
cells will contain the index to the node in the density array 3 , and solid nodes contain
-1. For every valid index, we add this to a new array containing just the indices of the
border cells that exist in the density array 4 . The resulting array can be used directly
in MPI_Create_Indexed_block to create a new MPI type for all fluid nodes in the border. This
process is repeated for all the borders in each process.
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... ...

2 3 13 14 32 33 35 36 37 38 39

0 1 2 3 4 12 13 14 15 31 32 33 34 35 36 37 38 39 40 41

1

2

3

4

Figure 4.6: The process of finding fluid nodes in a process’ border and creating an index array of
the fluid nodes in the border to be used when creating MPI types.

1 // Initialize border index array
2 int_t node_count = 0;
3 for (int_t i = 0; i < l_tot_size; i++) {
4 local_indexes[i] = -1;
5 }
6

7 // Copy border indices to local array
8 MPI_Gather(
9 indices, 1, *old_type, local_indexes, count, MPI_INT64_T, 0,

MPI_COMM_SELF);
10

11 // Add fluid node indices to displacement array
12 for (int_t i = 0; i < count; i++) {
13 if (local_indexes[i] >= 0) {
14 displacements[node_count++] = local_indexes[i];
15 }
16 }
17

18 // Create indexed block for the border
19 MPI_Type_create_indexed_block(
20 node_count, 1, displacements, lattice_pt, new_type);
21

22 MPI_Type_commit(new_type);

Listing 4.8: The code for creating a border type using indirect addressing based on the full-size
border
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Ghost cells

Creating the MPI types needed to send an internal border to a neighboring process requires
minimal changes in the underlying data structures describing the domain. However, the
receiving process also needs the necessary information to receive the border cells from a
neighbor process. Since each process only contains information about its own part of the
simulation domain, we cannot immediately use the same process as with the internal border
nodes.

In order to create the necessary type information required to receive ghost cells, we
also add ghost cells to the domain map, such that each process also has information about
all neighboring process’s borders. Similarly to the naive method, we exchange borders of
the domain map during the domain setup phase so that we can utilize the same method as
for internal nodes. The exact displacements of fluid nodes in each MPI_Type is irrelevant for
successful synchronization, meaning we don’t need to worry about the memory layout of
the density array matching that of its neighbors and only need to make sure the number of
ghost cells in the index mapping table matches that of its neighbors.

With separate MPI types for all borders, we can keep the same logic for the border
exchange and just replace the MPI types used in the MPI_Sendrecv calls as indicated in Ta-
ble 4.2.

Table 4.2: Changing the types used for border exchange to support indirect addressing

1 MPI_Sendrecv(density[1],
2 1,
3 -- row_dep_plane ,
4 NB_N,
5 0,
6 density[1],
7 1,
8 -- row_dep_plane ,
9 NB_S,
10 0,
11 comm_cart ,
12 MPI_STATUS_IGNORE);

1 MPI_Sendrecv(density[1],
2 1,
3 ++ mpi_t_plane_N ,
4 NB_N,
5 0,
6 density[1],
7 1,
8 ++ mpi_t_plane_S_ghost ,
9 NB_S,

10 0,
11 comm_cart ,
12 MPI_STATUS_IGNORE);

4.3.2 Loop optimizations
As a consequence of the indirect addressing, a further optimization we wish to explore is
changing the outer loop structures in both the collision and streaming kernels and evaluate
the effect on the performance.

With direct addressing, the outer loops of both kernels iterate over all points in the
domain and perform a check on whether the point is a solid point, skipping over the point
in this case (Listing 4.9, line 12). When we switch to indirect addressing, we already have
a complete list of all fluid points in the domain, essentially pre-computing the existing
conditional. By iterating over the fluid points instead of the index array, we can remove
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the conditional and save a lot of unnecessary branching in the program’s execution. An
interesting effect that we might be able to observe is how this optimization affects the cache
performance of the streaming kernel. With the indirect addressing, we expect the hardware
to much more effectively cache the fluid nodes compared to the naive approach with solid
nodes flooding the cache, especially for more porous simulation environments. However,
with this loop optimization, we might be able to observe even better cache performance
since we are iterating over the list directly.

A downside of this optimization is that we no longer have implicit information about
the location of the fluid node through the three loop variables. This means that we need to
store the indices of the nodes in a separate structure, p_coords in Listing 4.9. Although these
values are relatively small compared to the lattice point structure (3 · 8bytes = 24bytes
compared to 27 · 8bytes = 216bytes), the extra memory load could affect the program
negatively.

As this is a simple change to the code, we wish to explore how this will affect the
performance of the individual kernels and the application as a whole.

1 ,#ifdef OSTREAM_LOOP_INDIRECT
2 , for (int_t n = 0; n < fluid_node_count; n++) {
3 , int_t k = p_coords[n].z;
4 , int_t i = p_coords[n].y;
5 , int_t j = p_coords[n].x;
6 ,#else
7 , for (int_t k = -1; k < depth + 1; k++)
8 , for (int_t i = -1; i < height + 1; i++)
9 , for (int_t j = 0; j < width; j++) {

10 ,#endif
11 , for (int_t d = 0; d < D_COUNT; d++) {
12 , if (P_index(i, j, k) < 0)
13 , continue;

Listing 4.9: Loop optimizations in the stream kernel. The green highlight shows the direct looping.
The original looping is highlighted in red.
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Chapter 5
Experiment

In this chapter, we describe how we conduct the experiments using the proxy application.
We describe and show the different simulation environments that are considered and used,
how they relate to the real world, and how we create or obtain these environments. We then
briefly describe the test environment, including the HPC platforms, libraries, and compiler
versions and options. Lastly, we describe the variations of the proxy applications used
in the experiments, their differences, and what we expect to see when applying them to
various geometries and HPC environments.

5.1 Simulation domains
In this thesis, we have performed experiments on several existing models and simulated
environments. The base experiment uses a common Poisseuille flow geometry, as shown
in Fig. 6.1a. This model consists of a rectangle with walls on all sides in the xy plane. The
model is open on both sides of the flow direction, such that fluid density can wrap around
to simulate increasing flow. This type of environment has no solid points, and all ranks
are fully saturated and balanced. An example simulation of this environment is included
in Fig. 5.1.

In order to simulate varying degrees of porous domains in likeness to porous rocks in
reality, we also create a rough model to approximate these environments. We generate the
models by filling the domain with solid cylinders in the xy plane. These cylinders are added
at pseudo-random positions until the suitable porosity is reached. For lower porosities, we
also add xy planes of solid points along the z axis to keep a good balance of solid points
in the domain. Fig. 5.2 include renders of the 10% and 80% porosity domains generated
with this method.

All generated models are pre-generated and saved to a binvox file such that all experi-
ments use the exact same geometry. We don’t evaluate or consider the correctness of these
models to real-world scenarios, as these models aim to assess the proxy applications on
good enough balanced domains with varying degrees of porosity. Table 5.1 includes the
total, rank-minimum, and rank-maximum porosity for all the generated domains used in the
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Figure 5.1: Example Poisseuille flow domain. The fluid flow is generated at the inlet (left) and flows
in the x direction. The fluid wraps around the edge on the x-axis.
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experiments. We evaluate the difference in porosities to be small enough for the purpose
of these experiments.

Table 5.1: Porosity for the tested domains with 16 ranks. Min and max porosity represent the mini-
mum and maximum porosity among all ranks for the respective domain.

Domain type Size Target
Porosity

Total Min Max
RC

A 400 1.2% 0.0% 3.6%
1024 1.0% 0.0% 3.0%

G
en
er
at
ed

400

10% 10.2% 8.9% 11.3%
20% 18.2% 9.7% 24.6%
30% 29.8% 24.7% 34.5%
40% 41.0% 35.7% 45.7%
50% 47.6% 32.6% 58.6%
60% 60.9% 52.6% 72.8%
70% 69.2% 60.4% 77.0%
80% 82.5% 76.3% 87.3%
90% 91.9% 88.4% 96.2%
100% 100% 100% 100%

In the extreme case, we wish to experiment on very sparse domains that contain a
very small amount of fluid nodes compared to solid points, as well as being less balanced.
Blood flow simulations are a great candidate for this type of geometry. We use 3D models
of a patient-specific right coronary artery (RCA)[31]. This model is converted from vec-
tor images to cubic voxel data using the binvox program. We use two sizes of the RCA:
400x400x400 and 1024x1024x1024. An image of the RCA model is included in Fig. 5.3.
These environments have very low porosities, with the RCAmodel at ca. 1% total porosity
in addition to being unbalanced as a contrast to the generated domains. As the few fluid
points in this model are highly clustered, we expect many of the processes to have no work
as an effect. In these cases, it is useful to evaluate the rank balance and process topology
in order to achieve better balance among processes.

Although the voxel files are cubic, we perform an operation step to find the bounding
box of the fluid domain in the initialization step. This means that the real width of the sim-
ulated environment might be smaller in one direction. The reported porosities are obtained
from this bounded domain.
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(a) Generated domain with 80% porosity (b) Generated domain with 10% porosity

Figure 5.2: Generated domains with different degrees of porosity. The images show the solid ob-
structions in the domains.

Figure 5.3: 3D model of the patient-specific right coronary artery used in the simulations.
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5.2 Test environment
For the tests conducted as part of this thesis, we have used three different supercomputers
all located in Norway: Idun, Betzy, and Fram.

The job scheduling on Idun gives shared access to compute nodes, meaning several
users are allocated a fraction of resources on the node and can run processes simultaneously.
Fram and Betzy provide regardless of the share of resources that is in use.

5.2.1 Idun
Idun is a GPGPU-enabled computing cluster operated by the high-performance computing
group at NTNU. Idun consists of a mix of Intel Xeon and AMDEpyc 75F3 processors. The
compute nodes are connected using an InfiniBand interconnect in a tree topology[30]. The
Idun cluster has been used for the development and validation of the proxy applications.

5.2.2 Betzy
Betzy is the newest and largest supercomputer made available by the Norwegian Research
Infrastructure Services (NRIS). Betzy is a BullSequana XH200 computer located at NTNU
in Trondheim. The supercomputer has a peak floating point performance of 6.2 Petaflops
provided by 1344 compute nodes connected in a dragonfly topology[16] using an Infini-
Band HDR 100 interconnect. Details on the system’s specifications are included in Ta-
ble 5.2.

Table 5.2: Details of the Betzy supercomputer

Compute nodes 1344
CPU type AMD® Epyc™ 7742 @ 2.25GHz
CPU cores per node 128
Memory per node 256 GiB
Interconnect InfiniBand HDR 100 Dragonfly+ topology

5.2.3 Fram
Fram is another supercomputer provided by NRIS. It is a Lenovo NeXtScale nx360 with
a peak floating point performance of 1.1 Petaflops. Fram is located at UiT, the Arctic
University of Norway, and is configured with 1004 compute nodes connected in an island
topology. The system configuration of Fram is included in Table 5.3.

5.2.4 Software
All benchmarks use the same software versions across all computing environments. The
benchmarks were performed using the Intel compiler toolchain, version 2020b, and Intel
MPI.
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Table 5.3: Details of the Fram supercomputer

Compute nodes 1004
CPU type Intel® Xeon® E5-2683v4 @ 2.1GHz
CPU cores per node 32
Memory per node 64 GiB
Interconnect InfiniBand island topology

Table 5.4: Software versions and compiler settings

Compiler flags −g −O3 −Wall −Wextra −fopenmp −lm −lnetcdf

Compiler version Intel 2020b
MPI version Intel MPI 2020b
NetCDF version 4.7.4 (compiled with mpiicc 2020b)

5.2.5 Measurements

To measure the performance of the applications, we use MPI’s built-in MPI_Wtime method.
We collect four measurements in the main loop of the application, before and after each
of the main parts of the application (collide, stream, and border exchange). This allows
us to calculate the time difference before and after each part and, thus, the duration. The
relevant code is highlighted in Listing 5.1.

1 /* Time i n t e g r a t i o n loop * /
2 f o r ( i n t _ t i t e r = 0 ; i t e r < max_ i t e r ; i t e r ++) {
3 s t a r t _ t i m e = MPI_Wtime ( ) ;
4 c o l l i d e ( ) ;
5 c o l l i d e _ t i m e = MPI_Wtime ( ) ;
6 bo rde r_exchange ( ) ;
7 exchange_ t ime = MPI_Wtime ( ) ;
8 s t r e am ( ) ;
9 s t r e am_ t ime = MPI_Wtime ( ) ;

10 i t e r t i m e = MPI_Wtime ( ) ;
11

12 c o l l i d e _ t o t a l += c o l l i d e _ t i m e − s t a r t _ t i m e ;
13 e x c h a n g e _ t o t a l += exchange_ t ime − c o l l i d e _ t i m e ;
14 s t r e am _ t o t a l += s t r e am_ t ime − exchange_ t ime ;

Listing 5.1: Time measurements in the main loop using MPI_Wtime

Each process maintains its own measurements for the entire duration of the application
runtime. When the simulation is done, we use collective MPI file write operations to write
each process’ measurements and statistics to a single CSV file for further processing. In
addition to timing data, we collect data on the individual process’ porosity and emit some
data on the size of the process’ borders.
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5.3 Benchmarks
In order to gather valuable insights into the performance and behavior of the variations
of the proxy application, we perform a large set of benchmarks. Table 5.5 presents the
four variations of the application we have used when conducting these tests. To evaluate
the variations in reference to different geometries, we perform simulations of fluid flow on
porous domains of different porosities as well as the RCA model. We run simulations on
different sizes of the domains. In order to evaluate the scalability of the programs and the
selected geometry, the benchmarks are also performed with varying process counts.

Table 5.5: Identifiers for the different variations of the D3Q27 proxy application used in the bench-
marks and analysis

Base Baseline implementation as described in Section 4.1
IA Optimized with indirect addressing. Only data structures and the border

exchange have been modified compared to the baseline.
IALO Same as IA, with loop optimization applied to both the stream and collide

kernels as described in Section 4.3.2.
IALO 1D Same as IALO, with a different topology. This version partitions the

process topology only in the y direction.

5.3.1 Optimizations
Indirect addressing

The effects of the optimizations are expected to have a considerable impact on the per-
formance, especially for lower porosity models. This is due to the much lower memory
requirements and increased data locality resulting from the removal of “empty data” from
the density arrays, in the form of solid nodes. For a cubic simulation domain 400 nodes
wide, the memory requirements of just the density arrays adds up to a very large amount:

4003 · 27 · 8B · 2 = 27.6GB

For even larger models, such as with 1024 node width, the number grows to 462GB. Not
only will this hurt memory performance for less porous environments, but it also limits
the feasibility of simulating large environments and smaller environments in great detail.
With the indirect addressing scheme, the memory requirements of the density arrays are
directly proportionate to the porosity, meaning the same 400-wide environment only re-
quires 276MB of memory for the density arrays. We expect this to have a considerable
impact on cache performance as well as the ability to perform simulations at this size on
available computing platforms.

Loop optimizations

As detailed in Section 4.3.2, the loop optimizations are enabled by changing the outer loop
structure in the stream and collide kernels, iterating over the density array directly and
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skipping one of the indirect accesses. In addition, this optimization will skip many empty
loop iterations (iterations operating on solid nodes). This optimization is not expected
to have a considerable impact on larger porosity domains (> 60%), however this loop
structure might allow the CPU to more effectively cache and predict the memory access
pattern in addition to the fewer iterations making a larger difference for lower porosities
and sparse geometries. We discuss the effect of the loop optimizations in Section 6.2.3.

5.3.2 Scalability
It is interesting to evaluate the scalability of the optimizations compared to the baseline
program on the different geometries. The LBM applied to Poiseuille flow simulations,
common in benchmarks, benefits from strong scaling. However, we expect resource uti-
lization to worsen as we transition to less porous environments with fewer fluid nodes. In
this experiment, we only evaluate the strong scaling capabilities of the programs, using the
same simulation geometry and dimensions on all tests, and do not consider weak scaling.

We measure the scalability of all versions on the following geometries:

• RCA model at 400 node width

• RCA model at 1024 node width

• Generated domain with 50% porosity at 400 node width

• Generated domain with 10% porosity at 400 node width

With these tests, we aim to see how the different optimizations applied to the above domain
geometries affect the program’s ability to scale to many processes. The benchmarks in this
test use a constant 8 CPU cores per rank (OpenMP threads) and will allocate as many
ranks per node as possible. For Betzy, this means a maximum of 16 ranks per node and a
maximum of 4 ranks per node for Fram.

5.3.3 Porosity
The porosity experiments are conducted by running all variations of the proxy application
on simulation domains of different degrees of porosity. We run the benchmark on all the
generated models listen in Table 5.1. All tests are conducted on cubic 400 node-wide
domains. For these tests, we have opted to use 16 ranks, as this is a middle-ground in
terms of process count and will give all ranks a working size of 8 million nodes.

5.3.4 Topology
Unless specified, the benchmarks use a cartesian process topology with automatic dimen-
sions. This means that it is left up to the MPI implementation to choose. In most imple-
mentations, and the version used here, MPI will attempt to balance the dimensions in both
directions as shown in Fig. 5.4a. The IALO 1D program also usesMPI’s cartesian topology
but with a limit of 1 for the width of the topology in the z direction, as shown in Fig. 5.4b.
In this configuration, the processes only have two borders (north and south) compared to
the four in the normal configuration.
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(a) Default cartesian topology (b) 1D topology

Figure 5.4: A simulation domain split between 8 ranks with default cartesian topology in Fig. 5.4a
and 1-dimensional topology in Fig. 5.4b.
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Chapter 6
Analysis

In this chapter, we analyze the results of the experiments outlined in Chapter 5. Firstly, we
validate the correctness of the application in a Poisseuille flow simulation and a generated
porous model. We then compare the overall performance of the indirect addressing, loop
optimizations, and topology applied to the RCA model and select generated porous envi-
ronments. Further, we explore the proxy applications’ ability to scale to many processes
and see how the optimizations and different geometries affect weak scaling. Lastly, we will
discuss in more detail how the porosity of a simulated domain affects the program and the
optimizations before we look at the differences in the default and 1-dimensional topology
applied to the geometries.

6.1 Validation

As the proxy applications used in the experiments only implement a simple border condi-
tion that wraps the density distribution around one axis, we validate the applications where
this condition is most applicable. For the simplest case, we validate the application us-
ing a Poisseuille flow. Figs. 6.1a and 6.1b shows cross-sections of the xy and xz plane
in a Poisseuille flow simulation with the inlet at the minimum of the x-axis. We observe
that the velocity of the fluid is highest in the center in the flow direction, with the velocity
gradually slowing towards the walls of the container. This is in line with what we should
expect from a Poisseuille flow simulation. This same simulation is also pictured in three
dimensions in Fig. 5.1, with a cylindrical obstruction the length of the z axis Here we see
that the fluid is pushed above and below the cylinder, with an area of still particles behind
the obstruction. We also validate the fluid flow in the generated porous domains, where
Fig. 6.1c shows a cross-section of the fluid velocity on such a domain. This simulation also
shows similar results to what we can see in previous work. The fluid has high velocity in
the narrow channels near the inlet and low velocity near the outlet.
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(a) Cross-section of Poisseuille flow simu-
lation using theD3Q27 model

(b) Cross-section of the xy plane showing flow over a cylindrical
obstruction in the z direction.

(c) Flow in an 80% porosity generated domain.
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6.2 Performance optimizations

6.2.1 General performance analysis
In this section, we will look at the general performance differences of the various opti-
mizations applied to the proxy application, and how these optimizations vary in different
domain geometries.
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Figure 6.2: Overview of the performance of the various optimizations applied to a subset of the
tested models (RCA and various generated porous domains). All models have a height, width, and
depth of 400 nodes. The RCA measurements follow the left y-axis. The remaining measurements
follow the right axis. The tests were performed with 4 ranks on the Fram supercomputer.

Evaluating the performance of all variations on different domain geometries of the same
size, we can see that all optimizations have a noticeable effect on non-filled geometries. In
Fig. 6.2, we have plotted the per-iteration runtime of all parts of the application (stream,
collide, and exchange) for all variations on several geometries. The optimizations have no
benefit for the performance on the 0% porosity geometry (Poisseuille flow), and in fact,
contribute to a negative impact on the overall performance.

When we decrease the porosity of the geometry, we see that the optimizations start to
have an effect. Already at 60% porosity, both the indirect addressing and loop optimizations
decrease the runtime of the stream kernel especially, performing slightly worse with the
less memory bound collide kernel. The speedup of the IA program is already at 1.3x at
this relatively high porosity.

Decreasing the porosity even more, we start to see a much more marked effect, with
the 10% porosity geometry benefiting strongly from both indirect addressing and loop op-
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timizations in all parts of the program. At this stage, the IA program has a speedup of 4.8x
over the baseline.

For the very sparse and unbalanced RCAmodel, we start to see how these optimizations
can greatly benefit the LBM.With 4 ranks, the speedup of IALO over the baseline is at 44x.
With the RCA model, the collide kernel has minimal impact on the performance of the
base application, with the streaming kernel contributing to the bulk of the processing time.
Although the baseline implementation is very naive in streaming all particles regardless
of the type, this shows how a geometry-unaware LBM application can be ill-suited for
blood-flow simulations and similar applications. With this geometry, we also see how a
topology that is less balanced, matching that of the geometry, can be used instead of the
more balanced 2D cartesian topology to further increase the performance.

6.2.2 Indirect addressing
We see that the sparse geometries of the blood flow simulations strongly benefit from an
indirect addressing scheme. For the RCAmodel we have tested, only changing the memory
layout and border exchange to utilize indirect addressing results in a speedup of 11.7x
over the baseline. Even though the baseline could be further optimized to consider a large
solid/fluid node ratio other than with indirect addressing, this result shows that indirect
addressing is a highly effective and simple way to optimize the LBM for sparse geometries.

In addition to sparse geometries, we have also observed that indirect addressing can be
a very effective method to speed up the LBM for balanced porous domains such as porous
rocks. At 10% porosity we see a speedup of over 4.4x over the baseline. Considering that
real porous rocks such as sandstone have been shown to have a porosity between 8–25%[3,
14], an indirect addressing optimized LBM can also be useful for porous rock simulations.
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Figure 6.3: Comparison of the effect of indirect addressing (IA) and indirect addressing with loop
optimizations (IALO) on the scalability of the RCA model at 400 and 1024 node widths.

6.2.3 Loop optimizations
The loop optimizations (IALO) have relatively little impact for higher porosity domains,
as we see in Fig. 6.2, with comparable performance for the 60% porosity model, and a
speedup of 1.45x for the 10% porosity model. However, for the RCA 400 model, IALO
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achieves a speedup of 4x over IA with 4 ranks. The results are even better for the larger
RCA 1024 model, with a speedup of 6.6x at 4 ranks. Figs. 6.3a and 6.3b shows the same
trend for both the 400 and 1024 wide RCA models. Where the speedup is substantial for
most ranks, although not as large for many ranks (4.6x for RCA 1024 at 16 ranks). These
results show that the performance gains resulting from the optimized loop structure using
indirect addressing have a large effect over a traditional loop structure, especially for sparse
domains like the RCA model.

6.3 Scalability

6.3.1 Blood flow simulations
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Figure 6.4: Per-iteration runtime of IALO and IALO 1D on the 1024-wide RCA model.

RCA 1024

The IALO optimized version scales well with the RCA model on large geometries, with
a 1.7x speedup from 4 to 8 ranks using the RCA 1024 model. From 8 to 16 ranks, the
speedup is reduced to 1.2x, with even less speedup for increasing rank counts. Fig. 6.4a
shows the iteration time for the 1024-wide RCA model. We observe that most of the gains
are in the stream and collide kernels, with the time spent on border exchange increasing in
many cases, despite smaller borders. At 32 ranks, the speedup of computation combined
(stream & collide) over 4 ranks is ca. 8x, while the collision kernel sees a 1.8x speedup. As
the communication takes up 2/5 of the time at 4 ranks, using a maximum speedup of 2x for
the communication, a theoretical 4/5 of the application benefits from increased parallelism.
Using Amdahl’s law, this result limits the theoretical speedup of the application to roughly
5x for the RCAmodel at this size. Although an approximation, this provides a basis for the
scalability in this specific case.

Due to this limitation, at 20 ranks, the benefit of increasing the rank count over 16 is
minuscule. We also see that the topology and domain distribution greatly affects the impact
of the border exchange, with some rank counts and partitions being very unfavorable for
the RCA model. With 12 ranks, the border exchange uses 0.05s per iteration on average,
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while for 24 ranks it uses 0.07s. This makes the iteration time slower at 24 ranks compared
to 12 ranks. As our measurements don’t take into account the effective time used for bor-
der exchange, but also include synchronization wait time, we don’t know how much of this
time is spent waiting compared to communication.
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Figure 6.5: Per-iteration runtime of baseline and IALO on the 400-wide RCA model.

RCA 400

Looking at smaller models like the 400-wide RCA model in Fig. 6.5a, we see a similar
result. The distribution of time among the stream, collide and border exchange is quite
different for this problem size, occupying 58%, 13%, and 29% respectively at 16 ranks.
Comparatively, the distribution is 21%, 15%, and 64% at 1024 nodes. The lower frac-
tion of time spent on the less scalable border exchange for the smaller model translates to
slightly better scalability. Where the speedup from 8 to 16 ranks was 1.2x for RCA 1024,
we see a speedup of 1.8x for the RCA 400 model. Performing the same rough analysis us-
ing Amdahl’s law, with 93/100 of the application benefiting from parallelism, this smaller
model has a theoretical speedup limit of 14x. This rough analysis shows that the reduced
partition of time taken up by the less parallelizable border exchange provides the proxy
application with more room to scale for small problem sizes, at least for the rank counts
tested here.

We will look closer at the partitioning and workload in Section 6.5, but since the rank
partitioning and communication pattern has a large impact on the performance for sparse
geometries, especially for larger problem sizes, it is clear that a more efficient process
partitioning and communication model is required to take advantage of increased resource
availability.

6.3.2 Balanced porous geometries
When we look at balanced, porous geometries, we observe that the scalability is hard to
quantify based on rank count alone. In Fig. 6.7, we see that in a porous domain with half
of the nodes being solid, the collide and stream kernel has a speedup of 2.2x at 32 ranks
compared to 4 ranks. This is not only over 3.5x worse than the RCA model at the same
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Figure 6.7: Performance of 50% porous geometries with up to 32 ranks measured on Betzy.

size, but we see more variability in the performance gains at different rank counts, pointing
to the fact that the specific process topology and rank partitioning is an important factor for
these geometries despite smaller borders. For 16 ranks, we measured the size of a single
border to contain between 13000 and 23000 fluid nodes. With these large borders, a single
message amounts to between 2808kB and 4968kB, compared to 1260kB — 2457kB for
32 ranks. This results in overall smaller messages with 32 ranks, but the border exchange
still sees a 0.4x speedup (almost 2x slower) at 32 ranks over 16 ranks.

Compared to the RCA model, the stream kernel does not scale as well with this geom-
etry. Where we see a 6.5x speedup for the RCA model, the 50% geometry only sees a 2x
speedup from 4 to 32 ranks in the stream kernel. This worse scaling is almost identical in
the collide kernel as well (6.8x vs 2.8x for RCA and 50% respectively).

We also see a large dip in the iteration time at 20 ranks for this geometry, where we
saw an increase in time for the RCA model. This is expected for the RCA model, as its
measurements on Fram causes the node count to jump from 4 to 5 nodes at 20 ranks,
increasing the latency between nodes. This is not the case for the porous geometry tests,
as all tests are run on 4 nodes.
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Figure 6.8: Performance of 10% porous geometries with up to 32 ranks.

10% porosity

We have seen that the optimizations we have applied start to take considerable effect at
around 10% porosity. Looking at the scalability at this stage, we observe that it is similar
to the 50% geometry. Compared to the 50% porosity geometry however, the fraction of
time spent on the border exchange is more consistent for the 10% geometry while also
being generally smaller (2–26%). With 16 ranks, this domain reaches a maximum border
size of ca. 4500 fluid nodes, with a size of 4500 ·27 ·8B = 972kB, roughly 5 times smaller
than than at 50% porosity. However, even though the border exchanges provide less of an
impact, both the streaming and collision kernels still see minimal performance gains with
increasing ranks also at this stage.

In general, we see that the porous domains, at all tested porosities, scale much poorer
than the sparse RCA model at these rank sizes.

6.4 Porosity
In Fig. 6.9, we compare the per-iteration time for the different versions of the proxy appli-
cation on porous geometries from 100 — 10%. Similarly to what we have already seen in
Fig. 6.2, the optimized version scales much better with decreasing velocity than the base-
line. For this experiment, we see that the baseline has a median speedup of 1.04x for every
10% decrease in porosity with a total speedup of 1.5x from 100% to 10% porosity. Com-
paratively, the IALO version has amedian speedup of 1.13x per 10% decrease and a 9x total
speedup from 100% to 10% porosity. For the optimized version, we see speedup increased
with decreasing porosity, and this at a nearly linear rate, with the speedup increasing at
the same rate as the decreasing porosity. This result shows that the indirect addressing
scheme is highly effective for low porosity geometries and that for balanced workloads we
can expect the performance of the application to be proportional to the number of fluid
nodes.

Looking at how the time is distributed among streaming, collision, and border exchange
in Fig. 6.10, we see that all parts of the program see a speedup for decreasing porosity.
For each 10% decrease in porosity, the stream and collide kernels see a median speedup of
1.24x and 1.21x respectively, and the border exchange 1.17x. This shows that all parts of the
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Figure 6.9: Comparison of the variations of the proxy application on varying porosities. Running
with 16 ranks on a 400x400x400 balanced geometry.

application are susceptible to speedups when we apply the LBM to less porous geometries.
Given an ideal programming model that is not dependent upon the specific geometry of the
simulation domain, as is the case in this proxy application, we could expect this trend to
apply to sparse domains as well.
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6.5 Topology and rank balance

6.5.1 RCA geometry

Looking more closely at how the work is balanced between nodes, we can reason more
about how the application scales with different process topologies and domain configu-
rations. Fig. 6.11 shows the average time per iteration for each rank when running the
application with a normal cartesian process topology on the RCA model with a size of 400
nodes. The red bars show the number of fluid nodes for the rank, while the green and blue
bars plot the time per iteration of the collide and stream kernels with and without loop
optimizations respectively.

Firstly, we see how this particular geometry fails to take advantage of the large process
count with a normal cartesian distribution. Since the fluid nodes are highly localized and
non-uniformly spread in the geometry, 20 of the 32 ranks end up with negligible working
sets, with the remaining 12 performing the bulk of the calculation. We have visualized
rank 9’s relation to the geometry in Fig. 6.12, which is among the ranks with the largest
working set. As the rank’s local domains are very small at this large rank count, we see
how many of the ranks are allocated a partition of the domain that does not contain any
fluid nodes. This shows that a uniform, cartesian process topology may not apply well to
sparse geometries, especially at large rank counts.

Fig. 6.13 shows the same experiment, but with a one-dimensional process topology.
Here we see that the one-dimensional topology can achieve much greater balance than
that of a naive two-dimensional topology. As we have seen in Figs. 6.3a and 6.3b, for many
ranks, the increased work balance achieved with this topology can result in a slight increase
in performance, at the cost of increased synchronization for other topologies.
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Figure 6.12: Outline of the working set of rank 9 on the RCA model

6.5.2 Balanced porous geometries
Aswe have seen in earlier sections, the one-dimensional topology consistently showsworse
performance for the balanced porous geometries, with a 30% performance penalty for the
10% geometry at 4 ranks.

In Fig. 6.14, we plot the same figure for the 10% porosity model again with 32 ranks.
With this geometry, the ranks are much more balanced, with a standard deviation of 39
000 fluid nodes and a median of 211 000. Compared to the RCA model’s 18 000 standard
deviation and 600median, the partitioning of the fluid nodes among the ranks is muchmore
balanced for the porous domains. As a result, the computation time for each rank is also
much more similar. However, as we saw in the discussion of the scalability (Section 6.3.2)
of this particular configuration, the increased balance does not mean that the scalability is
better. The portion of time spent on border exchange and waiting for synchronization is
also higher for the balanced porosities despite the better balance.
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Figure 6.13: Rank balance for RCA-400 model with 1D topology
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Chapter 7
Conclusion

In this thesis, we have developed a proxy application for theD3Q27 LBMmethod and ana-
lyzed geometry-specific optimizations on blood-flow simulations and flow through porous
rocks.

The proxy application usesMPI andOpenMP to utilize available CPU resources in HPC
environments, and we have conducted tests on the Fram and Betzy supercomputers. We
have implemented indirect addressing to reduce memory requirements and memory load
throughout the application, in addition to creating an effective way to leverage the indirect
addressing memory layout with ghost cell patterns and MPI. By only transferring fluid
nodes, we show that the border exchange can achieve close to 10% speedup for respective
10% decreases in porosity. We also show that the stream and collide operations achieve
up to 20% speedup with 10% decreases in porosity using indirect addressing and loop
optimizations. Combined, the speedup of the optimized LBM application is measured to
be proportional to decreasing porosity in the simulation domain.

Using 3D models of patient-specific coronary arteries, we have evaluated the effect of
indirect addressing and subsequent optimizations to loop structures on sparse geometries,
such as those found in blood-flow simulations. We have found that these optimizations are
very well suited for these geometries, achieving over 12x speedup compared to the baseline
with indirect addressing and 48x with the optimized loop structure.

We have also evaluated the differences in performance when using a default cartesian
process topology and a topology that achieves better balancing of work among ranks. We
show that a one-dimensional topology achieves similar performance for porous rocks and
can achieve a speedup of up to 1.13x for blood-flow geometries at specific rank sizes.
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7.1 Future work

7.1.1 Communication model
In this proxy application, we have not implemented overlapping communication and com-
putation. This means that several ranks will needlessly wait for border cells when they can
compute cells that are independent of ghost cells. We have seen that the communication
overhead can be quite high for the LBM simulating porous domains, especially for many
ranks. Implementing overlapping communication and computation can considerably affect
the application’s performance and ability to scale to more processes.

Similarly, none of the partitioning schemes for the MPI ranks used in this thesis is par-
ticularly optimal for sparse geometries. Exploring other partitioning techniques to utilize
the available resources better can achieve better scaling and significantly impact the per-
formance at even a few ranks. Due to the sparse artery domain in blood-flow simulations,
achieving good balance even for smaller rank counts can require non-default partitioning
techniques.

We also don’t take into account empty messages using indirect addressing. This means
that, although the data is empty, we perform unnecessary synchronization and are affected
by the added latency of the empty transfers. A simple target for further optimization of the
communication using indirect addressing is to apply the knowledge of the geometry at the
borders to omit border exchanges that don’t contain any fluid nodes.

7.1.2 Further optimization
The indirect addressing scheme used in the proxy application developed as part of this thesis
used the fluid index array method. This method results in a substantial amount of indirect
memory accesses, hurting the performance of the streaming kernel somewhat. It would
be valuable to see how a different method of indirect addressing, such as the connectivity
matrix, compares to the one outlined in this thesis.

Intertwining streaming and collision in the LBM[11] is another method that can greatly
affect the memory performance of the LBM as a whole. Such an optimization will enhance
temporal locality, another useful exploration path for various geometries.

7.1.3 Blood flow simulations
We have only used a single patient-specific RCA model for blood-flow simulations, due to
the availability of such models. Although this has proven a valuable real-world model to
evaluate performance optimizations of the LBM in blood-flow simulations, a single exam-
ple domain will not capture enough information about such simulations in general. Experi-
menting with geometry-specific optimizations onmore examples of blood-flow simulations
such as other cardiovascular aorta and more examples with various degrees of porosity and
sparsity will validate the findings in this thesis and possibly explore further optimizations
in blood-flow simulations using the LBM.
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Appendix A
Selected code

A.1 Collision kernel

1 /* Co l l i s i o n / r e l a x a t i o n op e r a t o r :
2 * r e d i s t r i b u t e t h e d e n s i t i e s a t each l a t t i c e p o i n t so t h a t t h e y
3 * approach e q u i l i b r i um .
4 * /
5 void
6 c o l l i d e ( void )
7 {
8

9 #pragma omp p a r a l l e l f o r
10 # i f d e f OCOLLIDE_LOOP_INDIRECT
11 f o r ( i n t _ t n = 0 ; n < f l u i d _ n o d e _ c o u n t ; n++) {
12 i n t _ t k = p_coords [ n ] . z ;
13 i n t _ t i = p_coords [ n ] . y ;
14 i n t _ t j = p_coords [ n ] . x ;
15 i f ( i < 0 | | k < 0 | | i > h e i g h t − 1 | | k > dep th − 1)
16 cont inue ;
17 # e l s e
18 f o r ( i n t _ t k = 0 ; k < dep th ; k++)
19 f o r ( i n t _ t i = 0 ; i < h e i g h t ; i ++)
20 f o r ( i n t _ t j = 0 ; j < wid th ; j ++) {
21 # end i f
22 i n t _ t g l o b a l _ j = j /* + ca r t _ c o o r d s [1 ] * wid th * / ;
23 i n t _ t g l o b a l _ i = c a r t _ c o o r d s [ 0 ] * h e i g h t ;
24 r e a l _ t rho = 0 . 0 , uc = 0 . 0 ;
25 V( i , j , k , 0 ) = 0 . 0 ;
26 V( i , j , k , 1 ) = 0 . 0 ;
27 V( i , j , k , 2 ) = 0 . 0 ;
28

29 /* Dis r egard s o l i d p o i n t s * /
30 i f (MAP( i , j , k ) == FLUID | | MAP( i , j , k ) == WALL) {
31

32 /* Ca l c u l a t e t h e c u r r e n t v e l o c i t y
33 * f i e l d i n t h e f l u i d * /
34 i f (MAP( i , j , k ) == FLUID ) {
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35 f o r ( i n t _ t d = 0 ; d < D_COUNT; d++) {
36 rho += D_now ( i , j , k , d ) ;
37 V( i , j , k , 0 ) += c [ d ] [ 0 ] * D_now( i , j , k , d ) ;
38 V( i , j , k , 1 ) += c [ d ] [ 1 ] * D_now( i , j , k , d ) ;
39 V( i , j , k , 2 ) += c [ d ] [ 2 ] * D_now( i , j , k , d ) ;
40 }
41 V( i , j , k , 0 ) /= rho ;
42 V( i , j , k , 1 ) /= rho ;
43 V( i , j , k , 2 ) /= rho ;
44 }
45

46 /* Ca l c u l a t e c o l l i s i o n ope ra to r ,
47 i n s p i r e d by ”A Coupled Approach
48 f o r F l u i d Dynamic Problems
49 Using t h e PDE Framework
50 Peano ” , Neumann e t a l .
51 * /
52 f o r ( i n t _ t d = 0 ; d < D_COUNT; d++) {
53 r e a l _ t N_eq , de l t a_N ;
54 uc = c [ d ] [ 0 ] * V( i , j , k , 0 ) + c [ d ] [ 1 ] * V( i , j , k , 1 ) +
55 c [ d ] [ 2 ] * V( i , j , k , 2 ) ;
56 N_eq =
57 w[ d ] * rho *
58 ( 1 . 0 + ( uc / ( c_s * c_s ) ) +
59 ( ( uc * uc ) / ( 2 . 0 * c_s * c_s * c_s * c_s ) ) −
60 ( (V( i , j , k , 1 ) * V( i , j , k , 1 ) + V( i , j , k , 0 ) * V( i , j , k , 0 )

+
61 V( i , j , k , 2 ) * V( i , j , k , 2 ) ) /
62 (2 * c_s * c_s ) ) ) ;
63

64 de l t a_N = lambda * (D_now ( i , j , k , d ) − N_eq ) ;
65

66 /* Ex t e r n a l f o r c e a t j =1 * /
67 i f ( g l o b a l _ j == 1 && MAP( i , j , k ) == FLUID )
68 de l t a_N += w[ d ] * ( c [ d ] [ 0 ] * f o r c e [ 0 ] + c [ d ] [ 1 ] * f o r c e [ 1 ] +
69 c [ d ] [ 2 ] * f o r c e [ 2 ] ) ; / / 1e −3;
70

71 swi t ch (MAP( i , j , k ) ) {
72 /* R e d i s t r i b u t e f l u i d ac co rd i ng t o d e n s i t y / v e l o c i t y * /
73 case FLUID :
74 D_nxt ( i , j , k , d ) = D_now ( i , j , k , d ) + de l t a_N ;
75 break ;
76 /* Wal l s r e f l e c t incoming mass i n o p p o s i t e d i r e c t i o n * /
77 case WALL:
78 i f ( d != 0 )
79 D_nxt ( i , j , k , bounce ( d ) ) = D_now ( i , j , k , d ) ;
80 break ;
81 /* No work t o do on s o l i d p o i n t s * /
82 case SOLID :
83 break ;
84 }
85 }
86 }
87 }
88 }

code/lbm_d3q27.c

60



A.2 MPI type creation

1 void
2 c r e a t e _ t y p e s ( i n t ndims ,
3 i n t* l o c a l _ s i z e ,
4 i n t _ t* l o c a l _ g h o s t _ s i z e ,
5 i n t* l o c a l _ o r i g i n ,
6 i n t* g l o b a l _ s i z e )
7 {
8

9 MPI_Type_cont iguous (D_COUNT, MPI_DOUBLE, &l a t t i c e _ p t ) ;
10 MPI_Type_commit(& l a t t i c e _ p t ) ;
11

12 /*
13 * Depth , column and row t y p e s . In
14 * orde r o f major : z −> y −> x
15 * /
16 MPI_Type_vector ( l o c a l _ g h o s t _ s i z e [ 2 ] ,
17 1 ,
18 l o c a l _ g h o s t _ s i z e [ 0 ] * l o c a l _ g h o s t _ s i z e [ 1 ] ,
19 MPI_INT64_T ,
20 &z_row ) ;
21 MPI_Type_vector (
22 l o c a l _ g h o s t _ s i z e [ 0 ] , 1 , l o c a l _ g h o s t _ s i z e [ 1 ] , MPI_INT64_T , &column ) ;
23 MPI_Type_vector (
24 1 , l o c a l _ g h o s t _ s i z e [ 1 ] , l o c a l _ g h o s t _ s i z e [ 1 ] , MPI_INT64_T , &row ) ;
25 MPI_Type_vector (
26 1 , l o c a l _ g h o s t _ s i z e [ 1 ] , l o c a l _ g h o s t _ s i z e [ 1 ] , MPI_INT , &row_INT ) ;
27

28 MPI_Type_commit(&column ) ;
29 MPI_Type_commit(&row ) ;
30 MPI_Type_commit(&z_row ) ;
31 MPI_Type_commit(&row_INT ) ;
32

33 / / x−y p lane t y p e
34 MPI_Type_vector (
35 1 , l o c a l _ g h o s t _ s i z e [ 0 ] , l o c a l _ g h o s t _ s i z e [ 0 ] , row , &row_co l_p l ane ) ;
36 MPI_Type_vector (
37 1 , l o c a l _ g h o s t _ s i z e [ 0 ] , l o c a l _ g h o s t _ s i z e [ 0 ] , row_INT , &

row_col_p lane_INT ) ;
38

39 / / x−z p lane t y p e
40 MPI_Type_vector (
41 l o c a l _ g h o s t _ s i z e [ 2 ] , 1 , l o c a l _ g h o s t _ s i z e [ 0 ] , row , &row_dep_plane ) ;
42 MPI_Type_vector (
43 l o c a l _ g h o s t _ s i z e [ 2 ] , 1 , l o c a l _ g h o s t _ s i z e [ 0 ] , row_INT , &

row_dep_plane_INT ) ;
44

45 / / y−z p lane t y p e
46 MPI_Type_vector (
47 l o c a l _ g h o s t _ s i z e [ 2 ] , 1 , l o c a l _ g h o s t _ s i z e [ 1 ] , column , &co l _d ep_p l a n e ) ;
48

49 MPI_Type_commit(& row_co l_p l ane ) ;
50 MPI_Type_commit(& row_dep_plane ) ;
51 MPI_Type_commit(&row_dep_plane_INT ) ;
52 MPI_Type_commit(& row_col_p lane_INT ) ;
53 MPI_Type_commit(& co l _d ep_p l a n e ) ;
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54

55 / / Map domain suba r ray
56 MPI_Type_c r ea t e_ suba r r ay (DIMS ,
57 g l o b a l _ s i z e ,
58 l o c a l _ s i z e ,
59 l o c a l _ o r i g i n ,
60 MPI_ORDER_C ,
61 MPI_INT ,
62 &map_domain ) ;
63 MPI_Type_commit(&map_domain ) ;
64 }

code/lbm_d3q27.c
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A.3 Border exchange

1 void
2 bo rde r_exchange ( void )
3 {
4 / / Sou th
5 / / ^
6 / / Nor th
7 MPI_Sendrecv ( d e n s i t y [ 1 ] ,
8 1 ,
9 mpi_t_plane_N ,

10 NB_N,
11 0 ,
12 d e n s i t y [ 1 ] ,
13 1 ,
14 mpi_ t_p l ane_S_ghos t ,
15 NB_S ,
16 0 ,
17 comm_cart ,
18 MPI_STATUS_IGNORE) ;
19

20 / / Sou th
21 / / v
22 / / Nor th
23 MPI_Sendrecv ( d e n s i t y [ 1 ] ,
24 1 ,
25 mpi_ t_p lane_S ,
26 NB_S ,
27 0 ,
28 d e n s i t y [ 1 ] ,
29 1 ,
30 mpi_ t_p lane_N_ghos t ,
31 NB_N,
32 0 ,
33 comm_cart ,
34 MPI_STATUS_IGNORE) ;
35

36 / / Eas t <− West
37 MPI_Sendrecv ( d e n s i t y [ 1 ] ,
38 1 ,
39 mpi_t_plane_W ,
40 NB_W,
41 0 ,
42 d e n s i t y [ 1 ] ,
43 1 ,
44 mpi_ t_p l ane_E_ghos t ,
45 NB_E ,
46 0 ,
47 comm_cart ,
48 MPI_STATUS_IGNORE) ;
49

50 / / Eas t −> West
51 MPI_Sendrecv ( d e n s i t y [ 1 ] ,
52 1 ,
53 mpi_t_p lane_E ,
54 NB_E ,
55 0 ,
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56 d e n s i t y [ 1 ] ,
57 1 ,
58 mpi_t_plane_W_ghost ,
59 NB_W,
60 0 ,
61 comm_cart ,
62 MPI_STATUS_IGNORE) ;
63 }

code/lbm_d3q27.c
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